Biofilm deficiency in polysaccharide intercellular adhesin-negative variants of Staphylococcus epidermidis selected by subminimal inhibitory concentrations of gentamicin.

نویسندگان

  • Takashi Tamai
  • Toshiyuki Tsurumoto
  • Shiro Kajiyama
  • Shinji Adachi
  • Toshiyuki Sakimura
  • Hiroyuki Shindo
چکیده

Staphylococcus epidermidis is a cause of orthopedic device-related infection, and to treat such infection, biofilms should be controlled. Polysaccharide intercellular adhesin (PIA) is associated with the biofilm-forming ability of staphylococcal strains. PIA in biofilm-positive staphylococcal strains can be detected by the Congo red agar (CRA) method. In this study, we used the CRA method to examine the effects of subminimal inhibitory concentrations (sub-MICs) of 11 antibacterial agents on PIA production by S. epidermidis. We found that the PIA-negative variants were selected only by sub-MICs of gentamicin (GM). This PIA-negative phenotype was maintained over several generations in the absence of GM. Such selection occurred in six of eight clinical isolates, as well as in the biofilm-positive control strain. No such selection occurred with aminoglycoside antibiotics except for GM. Most of the PIA-negative variants that were selected by GM showed a markedly lower biofilm-forming ability on stainless steel washers than their untreated parent strains. In conclusion, variants with lower biofilm-forming ability may be selected by a sub-MIC of GM. Investigation of the reason why variants with reduced biofilm-forming ability can be selected in the presence of sub-MICs of GM may contribute to strategies against biofilm-related infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis.

Biofilm production is an important step in the pathogenesis of Staphylococcus epidermidis polymer-associated infections and depends on the expression of the icaADBC operon leading to the synthesis of a polysaccharide intercellular adhesin. A chromosomally encoded reporter gene fusion between the ica promoter and the beta-galactosidase gene lacZ from Escherichia coli was constructed and used to ...

متن کامل

Versatility of Biofilm Matrix Molecules in Staphylococcus epidermidis Clinical Isolates and Importance of Polysaccharide Intercellular Adhesin Expression during High Shear Stress

Staphylococcus epidermidis is a leading cause of hospital-associated infections, including those of intravascular catheters, cerebrospinal fluid shunts, and orthopedic implants. Multiple biofilm matrix molecules with heterogeneous characteristics have been identified, including proteinaceous, polysaccharide, and nucleic acid factors. Two of the best-studied components in S. epidermidis include ...

متن کامل

Essential functional role of the polysaccharide intercellular adhesin of Staphylococcus epidermidis in hemagglutination.

Hemagglutination of erythrocytes is a common property of Staphylococcus epidermidis strains, which is related to adherence and biofilm formation and may be essential for the pathogenesis of biomaterial-associated infections caused by S. epidermidis. In three independent biofilm-producing, hemagglutination-positive S. epidermidis isolates, interruption of the icaADBC operon essential for polysac...

متن کامل

Biofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus

Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...

متن کامل

Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress.

Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Japanese journal of infectious diseases

دوره 64 4  شماره 

صفحات  -

تاریخ انتشار 2011